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Abstract. This paper proposes the modification of a technique of simultaneous 

optimization of multiple response variables that works using a Bayesian 

predictive distribution, to incorporate different weights to the response variables 

according to their importance in the products. To achieve this, the desirability 

function has been incorporated to the original proposal. This research shows by 

representing different scenarios in one case study taken from literature, that the 

highest desirabilities and in turn the proposed optimum values in the process 

operating conditions always moved toward regions where the response variables 

with the highest weights had the best results, at the expense of performance in 

variables with the lowest weights. 

1 Introduction 

When working with product optimization, they are likely to have several quality 

characteristics that must be considered in the analysis. An alternative is to optimize 

separately each one of these characteristics, which according to various authors is not 

recommended because this approach may propose as many different combinations of 

control variables as response variables are considered in the study, which could 

generate a conflict to decide between them. The best way to address this situation is to 

consider all responses simultaneously, for which various techniques have been 

proposed, some of them more complete than others in relation to the various 

considerations that must be addressed during optimization. It is possible to find 

alternatives with different levels of technical complexity, with some of them even 

included within commercial statistical software, which helps them to be the best known 

and therefore used, although not necessarily the best options. This paper presents a 

Bayesian approach proposed by [1] which considers the correlation between the 

responses of interest and the uncertainty in the estimation of the model parameters in a 
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formal manner. Furthermore it is considered what was proposed by [2], to incorporate 

noise variables to the analysis. The contribution that will be made have a direct impact 

on optimizing multiple responses, since this is a modification that allows incorporate a 

different weights for each response variable, according to the importance they have on 

the functionality or cost of the product. This will be accomplished by replacing the 

probability of conformance as variable to optimize in the original approach by the 

overall desirability (OD) for every process operating condition being analyzed. 

1.1 Background 

As already mentioned, several options have emerged to work with the problem of 

simultaneous optimization of multiple responses, the most common based on the loss 

function [3][4] on process capability indexes [5][6], on the desirability function [7] [8] 

on the overlapping of graphical response surfaces and have recently emerged 

techniques that optimize the probability of concordance [9][1]. Some of these 

techniques emerged to overcome a weakness that had other options or even to 

complement its earlier versions evolving on the same idea and incorporating some 

changes that would make them more complete. 

Some aspects to consider by the various alternatives proposed to carry out the 

simultaneous optimization of the response variables are the correlation between the 

response variables, they must also consider noise factors that affect the quality 

characteristics and propose operating conditions of the processes that are robust to them 

and also must incorporate uncertainty in model parameters, all of this without losing 

the simplicity. So the right alternative must then be selected considering some of these 

elements. 

There have been many efforts by various researchers to design a tool that includes 

as many of the above mentioned aspects as possible and this information may be found 

on different research journals. This study proposes to modify an existing technique 

using the method proposed by Peterson [1] based on the Bayesian approach, 

incorporating the robust approach proposed by [2] and incorporating the possibility of 

adding weights to the response variables that presents the methodology based on the 

desirability function, thus obtaining a hybrid methodology that considers the Bayesian 

methodology and desirability function to take the benefits of both proposals, for the 

simultaneous optimization of multiple responses. 

1.2 Desirability Function 

The desirability function according to [10] is a technique used for optimization of 

multiple responses in the analysis of experiments in which multiple responses must be 

optimized simultaneously. According to [11], the desirability optimization 

methodology is based on the idea that the quality of a product or process having 

multiple features, when one of these is outside certain "desired" limits, it is completely 

unacceptable. The method tries to find process operating conditions that provide the 

"most desirable" response. The optimal values of the factors are determined from the 

maximization of the function. A high value of D, which varies between zero and one, 

indicates the best combination of factors to optimize the system studied. [6] propose 

using desirability functions which converts the problem of multiple responses into a 
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problem of a single response; that is, the response analyzed is the overall desirability 

D = (d1(Y1) . . . dm(Ym))1/m where ),...,( 1 mYY  are the m responses and d1,...,dm
 are the 

individual desirabilities. To convert the response di to yi these authors propose the 

following transformation: 
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where s and t are used to choose the desired shape of the transformation and thus reflect 

the wishes of the experimenter: if large values are taken (s, t ≥ 10) means that the 

desirability di only takes large values when it falls near its target value; small values for 

s and t (s, t ≤ 0.1) means that any value 
iŷ  within the range [LSi, USi] is also desirable. 

This can be seen in Figure 1. 

 

 

Fig. 1. Desirability function according to different values of s and t. 

According to [12] the default value of these exponents is one, suggesting linear 

increase desirability to the target value (see Figure 1). Also if a response variable has 

specification on only one side, what must be done is to take the target value (T) equal 

to the value at which it is considered that no additional gain on quality of the response 
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is achieved, and in the equation 1 one restriction disappears and figure 1, reduces to 

one side of the target value (T). According to [15] once the "n" variables (levels of 

factors and responses) are transformed into values of desirability, these are combined 

into a single function called Overall Desirability (OD) to find the best set of responses 

using the following equation: 

OD = (𝑑1
𝑟1 ×  𝑑2

𝑟2 × … ×  𝑑𝑛
𝑟𝑛)

1
∑ 𝑛 = [∏ 𝑑𝑖

𝑟𝑖n
𝑖=1 ]

1
∑ 𝑛, (2) 

where ri refers to weights that represent the importance of each variable with respect to 

others. 

To reach an OD different to zero, it is necessary that all the variables that are being 

optimized simultaneously have a desirability value greater than zero. On the other hand, 

if in any operating condition of the process, one of the responses is completely 

undesirable with 𝑑𝑖(�̂�𝑖) = 0, OD is also equal to zero, no matter how good the 

performance is in the remaining variables. 

The optimization of multiple responses through desirability function according to 

[14] has two disadvantages: first, OD can be difficult to model because it is a complex 

function of m responses; second, it is difficult to say what the difference between 

expected values of D means except that the bigger is the better. Another disadvantage 

of this approach according to [15] is that it does not consider the structure of variance-

covariance matrix of responses and as it was previously mentioned ignore this 

information can lead to a no real solution, if indeed the responses have significantly 

different variances or if they are highly correlated. Other approaches have been 

proposed based on the desirability function to correct some of these details from the 

original proposal, see for example, [16, 7, 8, 17, 18]. 

1.2 The Bayesian Approach 

According to [2] the optimization of multiple responses problem is to choose the values 

of k controllable factors xi, such that Y has certain desired properties. Often the case is 

presented in which these properties are the vector of responses Y meet specifications. 

Then let A represents the region of space defined by these specifications responses. 

Region A may have an arbitrary shape. Then optimizing multiple responses can be 

summarized in a simple goal, which is to maximize the probability of having the vector 

of responses within the specification region A, for example, maximize the following 

probability of conformance: 

max ( ) ( | , )

: ,

p x p y A x data

subjet to x R

 


 (3) 

where R is the region where the model is valid, which is usually taken as the 

experimental region defined by the design matrix X. 

According to [1] based on the typical multivariate regression model: 

,Y Bx e   (4) 

where B is a pxq matrix of regression coefficients and x is the qx1 vector of values x in 

which equation (4) is evaluated. In addition, the vector Y has a multivariate normal 
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distribution with mean vector 0 and variance-covariance matrix  . To consider the 

uncertainty in model parameters B y it can be used the posterior predictive density 

f (y | x,data) . Using the classical noninformative prior joint distribution for B y  and 

the model of equation (3), the bayesian predictive density for Y can be obtained in 

closed form. The bayesian predictive density for vector values x where the function is 

evaluated, is given by a multivariate t distribution with  degrees of freedom (df), as 

follows: 

2

/2
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12 ˆ ˆ( | , ) | |{1 ( ' ) ' ( ' )} ,

( ) ( )
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Here p is the number of responses to optimize, X is the qxn matrix formed by the 

n(xi) vectors of covariates, B̂  is the least squares estimation of B, (.)  refers to the 

gamma function, ̂ is the usual estimator of   calculated using the residuals of 

multivariate regression adjustment, 1 qpn  
and n is the sample size. 

According to [1] because equation 5, follows a multivariate t-distribution, is easy to 

simulate the Y values from this predictive density. [19] in his book Multivariate 

statistical simulation mentions that it is possible to simulate a random variable t - varied 

Y, by simulating a multivariate normal random variable and an independent Chi-square 

random variable [1] If W is a normal random variable with mean vector equal to zero 

and variance-covariance matrix equal to H-1  and additionally  U is a Chi-square random 

variable which is independent of W, then: 

jjj UWvY  )/(      for j=1,…,p, (7) 

where Yj is the jth element of Y, Wj is the j-th element of W and j


 is the jth element 

from )(xzB


 . From the above mentioned by [1] it follows that Y follows a 

multivariate t distribution with v  degrees of freedom. 

2 Case Study 

To illustrate the operation of the methodology, the experimental data proposed by [20] 

are taken, which considers three design variables, x1: reaction time, x2: temperature and 

x3: percentage of catalyst and two response variables, y1: conversion rate and y2: 
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thermal activity using a central composite design with six central runs. In this case x1 

was considered as noise variable (xn), so the optimization will be performed in relation 

to the control variables (xc) x2 and x3. Data are shown in Table 1. 

Table 1. Experimental results. 

 

Based on the information from the previous experiment the magnitude of 

subdivisions in the control factors to be used in the simulation to create a fine grid to 

generate response vectors using equation (7) is determined. These response vectors 

were used to calculate the corresponding desirabilities. In this case study we worked 

with a 112 array, which means that 121 different combinations of control factors x2 and 

x3 are used with the following levels for each variable: 

-1.682, -1.3456, -1.0092, -0.672, -0.3364, 0, 0.3364, 0.6728, 1.0092, 1.3456, 1.682. 

Once the number of combinations to be considered in the simulation is fixed, it is 

required to determine the number of runs to be simulated in each combination using 

equation (7) taking the adjusted regression models based on the original design. This 

time 10,000 vectors of two responses (y1, y2) were generated in each one of the 121 

combinations. 

At this point it is also addressed the robustness of the process, considering that for 

each of the combinations of x2 and x3, while they remain fixed in the simulation of the 

10,000 response vectors, the variable x1 takes a different value in each iteration, which 

is generated from a normal distribution (0, 0.1), whereby a vector of covariates x1, x2 

Control Variables Response Variables 

Reaction time Temperature % Catalyst Conversion rate Thermal  Activity 

𝑋𝑛 𝑋2 𝑋3 𝑌1 𝑌2 

-1 -1 -1 74 53.2 

1 -1 -1 51 62.9 

-1 1 -1 88 53.4 

1 1 -1 70 62.6 

-1 -1 1 71 57.3 

1 -1 1 90 67.9 

-1 1 1 66 59.8 

1 1 1 97 67.8 

-1.682 0 0 76 59.1 

1.682 0 0 79 65.9 

0 -1.682 0 85 60 

0 1.682 0 97 60.7 

0 0 -1.682 55 57.4 

0 0 1.682 81 63.2 

0 0 0 81 59.2 

0 0 0 75 60.4 

0 0 0 76 59.1 

0 0 0 83 60.6 

0 0 0 80 60.8 

0 0 0 91 58.9 
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and x3 is formed. With these 10,000 response vectors the desirabilities are calculated 

using equation 1 in each of the combinations of the control variables, comparing the 

values of the response variables against the corresponding specifications which are 

presented in Table 2. 

Table 2. Specifications of the response variables. 

Response LSL Target USL Kind of variable 

𝑦1 80 110     - The bigger the better 

𝑦2 50 57.5 65 The nominal is best 

 

Once the individual desirabilities have been calculated the dimension of the problem 

is reduced by calculating OD for each vector generated in each of the 121 combinations 

using Equation 2. In this case study four scenarios were proposed by changing the levels 

of importance of the response variables. In scenario 1 (OD1) the response variables are 

considered equally important, while in scenarios 2 (OD2), 3 (OD3) and 4 (OD4) is 

fictitiously considered that response variables have different importance, which is 

reflected in different weights in order to assess how the optimal point reacts to these 

weights. Table 3 shows the weights used for each response variable in each one of the 

proposed scenarios. 

Using the OD values, polynomials regression models were adjusted using Minitab 

16 to represent the relationship between them and the control variables for the four 

scenarios under analysis.  As an example, equation 8 shows the adjusted model for OD3. 

The adjusted R2 for all four models were greater than 96% and for this reason the 

optimization (maximization) of these regression models was carried out. In this case, 

the optimization was realized with the help of Excel Solver using the Generalized 

Reduced Gradient method (GRG) to determine the best levels of the control variables 

with the maximum OD for every one polynomial model. To initiate the search 15 values 

for control variables were used. The proposed optimal process operating condition and 

the OD achieved in each model are shown in Table 4. 

Table 3. Weights considered for the response variables in each scenario. 

 Weight 

Scenario 𝑌1 𝑌2 

𝑂𝐷1 0.5 0.5 

𝑂𝐷2 0.6 0.4 

𝑂𝐷3 0.8 0.2 

𝑂𝐷4 0.2 0.8 

 

𝑀𝑂𝐷3 = 0.155 + 0.0708 𝑥2 + 0.0764 𝑥3 - 0.118 𝑥2𝑥3 + 0.320 𝑥2
2  

- 0.0971 𝑥3
2 + 0.0144 𝑥3

3𝑥2 - 0.0299 𝑥2
4 + 0.0208 𝑥3

4  

- 0.00812 𝑥3
4𝑥2

2,  

𝑅2= 96.9%. 

(8) 
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Table 4. Desirability Values in every optimal process operating conditions. 

Scenario 
Weights 

 

 

Optimal values 
OD 

𝑌1 𝑌2 𝑋2 𝑋3 

𝑂𝐷1 0.5 0.5 1.682 -0.6055 0.8022 

𝑂𝐷2 0.6 0.4 1.682 -0.5710 0.8513 

𝑂𝐷3 0.8 0.2 1.682 -0.5208 0.9737 

𝑂𝐷4 0.2 0.8 1.5073 -0.7756 0.7140 

 

Finally, optimal proposed process operating conditions are tested using a matlab 

program very similar to that used in the initial simulation with a small change to allow 

that the control variables had fixed values, which corresponded to the optimum values 

proposed by the Solver; to do this 10,000 iterations were used. The simulation was 

repeated 30 times in order to know how the respective individual desirabilities for every 

response variable changed. With these values graphical comparisons of the two 

response variables for the four scenarios were made to see if there was a change on 

their desirabilities due to the different weights they had in each scenario. Figure 2 shows 

the behavior of the desirability associated to Y1 (D1) in the four scenarios analyzed. The 

graph shows that generally D1 has the highest values in scenario OD3, which is caused 

because this response variable had a weight of 0.8, while in the other scenarios Y1 had 

lower weights. The opposite occurs in OD4 because is in this scenario where the lowest 

weight was given to this response variable, reflected in turn in the lowest values of D1. 

 

 

Fig. 2. Comparison of D1 values in the four scenarios. 

In the case of behavior of desirability associated to the variable Y2 (D2), the four 

scenarios can be seen in Figure 3. It is noted that in D2 the highest desirabilities were 

in the scenario OD4 in the 30 repetitions of validation, this is because in this scenario 
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the highest weight (0.8) was given to this variable. In general, similar conclusions than 

those presented in figure 2 can be made with D2 going up or down depending on the 

weights given to Y2 in every scenario. 

 

 

Fig. 3. Comparison of D2 values in the four scenarios. 

With the previous figures the hypothesis that the best results achieved in the different 

proposed scenarios tend to favor the response variables with highest weights is 

confirmed graphically. 

Table 5. Confidence intervals for the desirabilities in each response variable. 

Scenario 
Weigths Average Confidence interval (95%) 

𝒀𝟏 𝒀𝟐 𝑫𝟏 D2 𝑫𝟏 𝑫𝟐 

𝑶𝑫𝟏 
(0.5) (0.5) 0.9795 0.6269 

(0.978972, 

0.980101) 

(0.625400, 

0.628480) 

𝑶𝑫𝟐 
(0.6) (0.4) 0.9799 0.6236 

(0.979508, 

0.980352) 

(0.622063, 

0.625037) 

𝑶𝑫𝟑 
(0.8) (0.2) 0.9825 0.5972 

(0.981972, 

0.982994) 

(0.595745, 

0.598568) 

𝑶𝑫𝟒 
(0.2) (0.8) 0.9196 0.6568 

(0.918730, 

0.920397) 

(0.655318, 

0.658302) 

 

Table 5 shows the 95% confidence interval estimates of individual desirabilities, 

based on the 30 values obtained during validation. With these intervals it can be seen 

that there is a statistically significant difference in individual desirabilities of the 

response variables in the four scenarios presented. In general, the limits of the intervals 

are shifted up as the weights are increased and on the contrary, the limits decreased 

when the weights also decreased. Thus, according to these results the proposed 
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methodology reacted according to the weights given to each response variable, 

searching the process operating conditions, where the variables with the highest weights 

behave better. 

3 Conclusions 

According to the results achieved in this and another case study not reported in this 

study it is possible to conclude that the methodology proposed by [1] and supplemented 

by [2] works well with the proposed modification to consider that the response variables 

have different weights, which in turn can modify the optimum results achieved, 

searching process configurations with better behavior in the variables with the highest 

weights. For this reason it makes possible to analyze scenarios where response variables 

are not equally important, so that the original methodology becomes more flexible and 

attractive in many practical cases, since in its original version is not designed to 

incorporate these considerations. Other advantage is that with the proposed 

modification to incorporate the desirability function, a problem can be solved using 

different combinations of weights on the response variables, which would provide to 

engineers and researchers different solutions with respect to the proposed optimal 

process operation condition, which can enrich decision making. 
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